Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Biomed Online ; 40(4): 479-493, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32147385

RESUMO

RESEARCH QUESTION: What are the incidence and patterns of meiotic trisomies and recombination separately and in relation to each other at the blastocyst stage via single nucleotide polymorphism genotyping combined with array comparative genomic hybridization. DESIGN: Single nucleotide polymorphism microarrays were carried out on a total of 1442 blastocyst stage embryos derived from 268 fertile couples undergoing preimplantation genetic diagnosis for the purposes of avoiding transmittance of known single gene disorders to their offspring; 24-chromosome aneuploidy screening via array comparative genomic hybridization was carried out in parallel. RESULTS: One hundred per cent of meiotic trisomies identified in these embryos were of maternal origin and their incidence increased significantly with advancing maternal age (P < 0.0001). A total of 55.8% of meiotic trisomies were meiosis I-type and 44.2% were meiosis II-type. Certain chromosomes were affected more by meiosis I-type errors, whereas others experienced more meiosis II-type errors. A detailed recombination analysis was carried out for 11,476 chromosomes and 17,763 recombination events were recorded. The average number of recombination sites was 24.0 ± 0.3 for male meiosis and 41.2 ± 0.6 for female meiosis (autosomes only). Sex-specific differences were observed in the locations of recombination sites. Comparative analysis conducted between 190 euploid embryos and 69 embryos presenting maternal meiotic trisomies showed similar recombination rates (P = 0.425) and non-recombinant chromatid rates (P = 0.435) between the two categories; differences, however, were observed when analysing embryos affected with specific maternal meiotic trisomies. CONCLUSIONS: This study yielded unique data concerning recombination and the origin of aneuploidies observed during the first few days of life and provides a novel insight into these important biological processes.


Assuntos
Aneuploidia , Blastocisto/fisiologia , Variações do Número de Cópias de DNA , Genótipo , Meiose , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Feminino , Humanos , Masculino , Gravidez , Diagnóstico Pré-Implantação
3.
Hum Reprod ; 32(11): 2340-2347, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040520

RESUMO

STUDY QUESTION: Can quantification of mitochondrial DNA (mtDNA) in trophectoderm (TE) biopsy samples provide information concerning the viability of a blastocyst, potentially enhancing embryo selection and improving IVF treatment outcomes? SUMMARY ANSWER: This study demonstrated that euploid blastocysts of good morphology, but with high mtDNA levels had a greatly reduced implantation potential. WHAT IS KNOWN ALREADY: Better methods of embryo selection leading to IVF outcome improvement are necessary, as the transfer of chromosomally normal embryos of high morphological grade cannot guarantee the establishment of an ongoing pregnancy. The quantity of mtDNA in embryonic cells has been proposed as a new biomarker of viability-higher levels of mtDNA associated with reduced implantation potential. STUDY DESIGN, SIZE, DURATION: mtDNA was quantified in 199 blastocysts, previously biopsied and shown to be chromosomally normal using preimplantation genetic testing for aneuploidy (PGT-A). These were generated by 174 couples (average female age 37.06 years). All patients underwent IVF in a single clinic. The study took place in a blinded, non-selection manner-i.e. mtDNA quantity was not known at the time of single embryo transfer. The fate of the embryos transferred was subsequently compared to the mtDNA levels measured. PARTICIPANTS/MATERIALS, SETTING, METHODS: Embryos were biopsied at the blastocyst stage. The TE samples obtained were subjected to whole genome amplification followed by comprehensive chromosome analysis via next generation sequencing. The same biopsy specimens were also tested using quantitative PCR, allowing highly accurate mtDNA quantification. After blastocyst transfer, the code used for blinding was broken and analysis undertaken to reveal whether the amount of mtDNA had any association with embryo implantation. MAIN RESULTS AND THE ROLE OF CHANCE: mtDNA analysis of the 199 blastocysts revealed that 9 (5%) contained unusually high levels of mtDNA. All embryo transfers involved a single chromosomally normal blastocyst of good morphology. Of these, 121 (60%) led to ongoing pregnancies, 11(6%) led to biochemical pregnancies, and 10 (5%) spontaneously miscarried. All (100%) of these blastocysts had mtDNA levels considered to be normal/low. The remaining 57 (29%) blastocysts failed to implant. Among these non-viable embryos there were 9 (16%) with unusually high levels of mtDNA. This meant that the ongoing pregnancy rate for morphologically good, euploid blastocysts, with normal/low levels of mtDNA was 64% (121/190). In contrast, the ongoing pregnancy rate for the same type of embryos, but with elevated mtDNA levels, was 0/9 (0%). This difference was highly statistically significant (P < 0.0001). LIMITATIONS REASONS FOR CAUTION: To determine the true extent of any clinical benefits a randomized clinical trial will be necessary. Research is needed to improve understanding of the biology of mtDNA expansion. WIDER IMPLICATIONS OF THE FINDINGS: This is the first investigation to evaluate the clinical impact of increased mtDNA in a prospective blinded manner. Results confirm that embryos with elevated mtDNA rarely implant, supporting its use as a viability biomarker. A total of 64% of euploid blastocysts with normal/low mtDNA implanted versus 60% for the cohort as a whole. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by institutional funding (Reprogenetics UK and Reprogenetics). DW is supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre Programme. None of the authors have any competing interests.


Assuntos
Blastocisto/metabolismo , DNA Mitocondrial/metabolismo , Fertilização in vitro , Resultado da Gravidez , Adulto , Técnicas de Cultura Embrionária , Implantação do Embrião , Feminino , Humanos , Pessoa de Meia-Idade , Gravidez , Taxa de Gravidez , Estudos Prospectivos
5.
Cancer Epidemiol Biomarkers Prev ; 26(4): 553-560, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28373169

RESUMO

Background: Multilevel frameworks suggest neighborhood circumstances influence biology; however, this relationship is not well studied. Telomere length (TL) shortening has been associated with individual-level and neighborhood-level exposures and disease and may provide insights into underlying biologic mechanisms linking neighborhood with biology. To support neighborhood-biology investigations, we sought to determine the independent effect of neighborhood exposures on TL using standard multilevel linear regression models and quantile regression, a nonlinear, social science method applicable for testing the biologic hypothesis that extremes of the TL distribution are related to poor outcomes.Methods: In a multicenter, cross-sectional study, blood TL was measured in 1,488 individuals from 127 census tracts in three U.S. regions using terminal restriction fragment assays. Multilevel linear and quantile regression models were adjusted for individual-level race, education, perceived stress, and depression. Neighborhood exposures included population density, urban/residential crowding, residential stability/mobility, and socioeconomic status.Results: TL was not associated with any neighborhood variable using linear models, but quantile regression revealed inverse associations between population density and urban crowding at the lower tails of the TL distribution [5th (population density P = 0.03; urban crowding P = 0.002), 50th (both P < 0.001), 75th percentiles (both P < 0.001)]. TL was related to residential stability at the upper tail (95th percentile P = 0.006).Conclusions: Findings support the use of nonlinear statistical methods in TL research and suggest that neighborhood exposures can result in biological effects.Impact: TL may serve as an underlying example of a biologic mechanism that can link neighborhood with biology, thus supporting multilevel investigations in future studies. Cancer Epidemiol Biomarkers Prev; 26(4); 553-60. ©2017 AACRSee all the articles in this CEBP Focus section, "Geospatial Approaches to Cancer Control and Population Sciences."


Assuntos
Características de Residência/classificação , Encurtamento do Telômero , Telômero/fisiologia , População Urbana , Adulto , Biomarcadores/sangue , Estudos Transversais , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Classe Social , Inquéritos e Questionários , Estados Unidos
6.
Reprod Biomed Online ; 33(5): 550-559, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27720366

RESUMO

Preimplantation genetic diagnosis of aneuploidy (PGD-A) with comprehensive chromosome analysis has been known to improve pregnancy outcomes. Accuracy in detecting sex chromosomes becomes important when selecting against embryos at risk for sex-linked disorders. A total of 21,356 PGD-A cycles consisting of day-3 (cleavage) or day-5 (blastocyst) biopsies were received at the same laboratory for PGD-A via fluorescence in situ hybridization (FISH) or array comparative genome hybridization (aCGH) from multiple fertility centres. The misdiagnosis rates were 0.12% (Wilson 95% CI 0.05 to 0.25%) in day-3 FISH cycles, 0.48% (Wilson 95% CI 0.19 to 1.22%) in day-3 aCGH cycles and 0.0% (Wilson 95% CI 0 to 0.26) in day-5 aCGH cycles. Although rare, the likely causative biological event for true misdiagnosis is embryonic XX/XY mosaicism. Reanalysis of 1219 abnormal cleavage-stage research embryos revealed a 73% incidence of minor and major mosaicism. Only four (0.3%) embryos were found to be diploid and contained XX and XY cells that could potentially account for the misdiagnosis of sex. Our investigation identified errors leading to misdiagnosis and their attribution to specific events during PGD-A testing. The reported misdiagnosis rates suggest that PGD-A for sex determination is highly accurate, particularly when using aCGH applied to blastocyst biopsies.


Assuntos
Aneuploidia , Diagnóstico Pré-Implantação/métodos , Cromossomos Sexuais , Pré-Seleção do Sexo/métodos , Biópsia , Humanos , Hibridização in Situ Fluorescente , Mosaicismo , Diagnóstico Pré-Implantação/normas
7.
PLoS One ; 11(1): e0146723, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26752285

RESUMO

BACKGROUND: Leukocyte telomere length(LTL) has been associated with age, self-reported race/ethnicity, gender, education, and psychosocial factors, including perceived stress, and depression. However, inconsistencies in associations of LTL with disease and other phenotypes exist across studies. Population characteristics, including race/ethnicity, laboratory methods, and statistical approaches in LTL have not been comprehensively studied and could explain inconsistent LTL associations. METHODS: LTL was measured using Southern Blot in 1510 participants from a multi-ethnic, multi-center study combining data from 3 centers with different population characteristics and laboratory processing methods. Main associations between LTL and psychosocial factors and LTL and race/ethnicity were evaluated and then compared across generalized estimating equations(GEE) and linear regression models. Statistical models were adjusted for factors typically associated with LTL(age, gender, cancer status) and also accounted for factors related to center differences, including laboratory methods(i.e., DNA extraction). Associations between LTL and psychosocial factors were also evaluated within race/ethnicity subgroups (Non-hispanic Whites, African Americans, and Hispanics). RESULTS: Beyond adjustment for age, gender, and cancer status, additional adjustments for DNA extraction and clustering by center were needed given their effects on LTL measurements. In adjusted GEE models, longer LTL was associated with African American race (Beta(ß)(standard error(SE)) = 0.09(0.04), p-value = 0.04) and Hispanic ethnicity (ß(SE) = 0.06(0.01), p-value = 0.02) compared to Non-Hispanic Whites. Longer LTL was also associated with less than a high school education compared to having greater than a high school education (ß(SE) = 0.06(0.02), p-value = 0.04). LTL was inversely related to perceived stress (ß(SE) = -0.02(0.003), p<0.001). In subgroup analyses, there was a negative association with LTL in African Americans with a high school education versus those with greater than a high school education(ß(SE) = -0.11(0.03), p-value<0.001). CONCLUSIONS: Laboratory methods and population characteristics that differ by center can influence telomere length associations in multicenter settings, but these effects could be addressed through statistical adjustments. Proper evaluation of potential sources of bias can allow for combined multicenter analyses and may resolve some inconsistencies in reporting of LTL associations. Further, biologic effects on LTL may differ under certain psychosocial and racial/ethnic circumstances and could impact future health disparity studies.


Assuntos
Etnicidade , Psicologia , Grupos Raciais , Homeostase do Telômero , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Regressão , Fatores Socioeconômicos
8.
Nat Commun ; 6: 7505, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26106036

RESUMO

Although BRCA1 function is essential for maintaining genomic integrity in all cell types, it is unclear why increased risk of cancer in individuals harbouring deleterious mutations in BRCA1 is restricted to only a select few tissues. Here we show that human mammary epithelial cells (HMECs) from BRCA1-mutation carriers (BRCA1(mut/+)) exhibit increased genomic instability and rapid telomere erosion in the absence of tumour-suppressor loss. Furthermore, we uncover a novel form of haploinsufficiency-induced senescence (HIS) specific to epithelial cells, which is triggered by pRb pathway activation rather than p53 induction. HIS and telomere erosion in HMECs correlate with misregulation of SIRT1 leading to increased levels of acetylated pRb as well as acetylated H4K16 both globally and at telomeric regions. These results identify a novel form of cellular senescence and provide a potential molecular basis for the rapid cell- and tissue- specific predisposition of breast cancer development associated with BRCA1 haploinsufficiency.


Assuntos
Senescência Celular/genética , Células Epiteliais/metabolismo , Genes BRCA1 , Instabilidade Genômica/genética , Haploinsuficiência , Glândulas Mamárias Humanas/metabolismo , Encurtamento do Telômero/genética , Dano ao DNA , Células Epiteliais/citologia , Heterozigoto , Humanos , Glândulas Mamárias Humanas/citologia , Mutação , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...